Abstract
AbstractThe paper is devoted to the study of solutions to linear elliptic boundary value problems in domains depending smoothly on a small perturbation parameter. To this end we transform the boundary value problem onto a fixed reference domain and obtain a problem in a fixed domain but with differential operators depending on the perturbation parameter. Using the Fredholm property of the underlying operator we show the differentiability of the transformed solution under the assumption that the dimension of the kernel does not depend on the perturbation parameter. Furthermore, we obtain an explicit representation for the corresponding derivative.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.