Abstract

A study is conducted of the influence of microscale geometric and physical randomness on effective moduli of a continuum approximation of disordered microstructures. A particular class of microstructures investigated is that of planar Delaunay networks made up of linear elastic rods connected by joints. Three types of networks are considered: Delaunay networks with random geometry and random spring constants, modified Delaunay networks with random geometry and random spring constants, and regular triangular networks with random spring constants. Using a structural mechanics method, a numerical study is conducted of the first and second order characteristics of random fields of effective moduli. In view of duality of the Delaunay triangulations to the Voronoi tessellations, these results provide the basis for development of analytical models of various heterogeneous solids, e.g. granular, fibrous.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.