Abstract
Abstract A simulation model of the axial structure of turbulent jet diffusion flames is formulated for the purpose of interpreting flame-structure measurements. The model, based on the linear-eddy approach, incorporates spatial and temporal variation of the air entrainment rate, reflecting buoyancy effects, and an implementation of turbulent mixing using a novel stochastic representation of convective stirring in conjunction with Fick's law governing molecular diffusion. Simulation results are compared to axial profiles of mixing-cup density measured in propane flames. The comparisons suggest that the measured Froude-number dependences reflect the combined effect of finite-rate mixing and the transition from forced to natural convection. Predictions for hydrogen flames are presented in order to assess the generality of inferences based on the propane results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.