Abstract
In this article we study a linear discriminant function of multiple m-variate observations at u-sites and over v-time points under the assumption of multivariate normality. We assume that the m-variate observations have a separable mean vector structure and a “jointly equicorrelated covariance” structure. The new discriminant function is very effective in discriminating individuals in a small sample scenario. No closed-form expression exists for the maximum likelihood estimates of the unknown population parameters, and their direct computation is nontrivial. An iterative algorithm is proposed to calculate the maximum likelihood estimates of these unknown parameters. A discriminant function is also developed for unstructured mean vectors. The new discriminant functions are applied to simulated data sets as well as to a real data set. Results illustrating the benefits of the new classification methods over the traditional one are presented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.