Abstract
Abstract. We consider classification of the realization of a multivariate spatial–temporal Gaussian random field into one of two populations with different regression mean models and factorized covariance matrices. Unknown means and common feature vector covariance matrix are estimated from training samples with observations correlated in space and time, assuming spatial–temporal correlations to be known. We present the first-order asymptotic expansion of the expected error rate associated with a linear plug-in discriminant function. Our results are applied to ecological data collected from the Lithuanian Economic Zone in the Baltic Sea.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.