Abstract

We propose signature linear discriminant analysis (signature-LDA) as an extension of LDA that can be applied to signatures, which are known to be more informative representations of local image features than vector representations, such as visual word histograms. Based on earth mover's distances between signatures, signature-LDA does not require vectorization of local image features in contrast to LDA, which is one of the main limitations of classical LDA. Therefore, signature-LDA minimizes the loss of intrinsic information of local image features while selecting more discriminating features using label information. Empirical evidence on texture databases shows that signature-LDA improves upon state-of-the-art approaches for texture image classification and outperforms other feature selection methods for local image features.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.