Abstract

In multivariate data analysis, Fisher linear discriminant analysis is useful to optimally separate two classes of observations by finding a linear combination of p variables. Functional data analysis deals with the analysis of continuous functions and thus can be seen as a generalisation of multivariate analysis where the dimension of the analysis space p strives to infinity. Several authors propose methods to perform discriminant analysis in this infinite dimensional space. Here, the methodology is introduced to perform discriminant analysis, not on single infinite dimensional functions, but to find a linear combination of p infinite dimensional continuous functions, providing a set of continuous canonical functions which are optimally separated in the canonical space.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.