Abstract

Abstract The article presents information on how to use satellite interferometry to detect linear discontinuous ground deformation [LDGD] caused by underground mining. Assumptions were made based on the properties of the SAR signal correlation coefficient (coherence). Places of LDGD have been identified based on these assumptions. Changes taking place on the surface between two acquisitions lead to worse correlation between two radar images. This results in lower values of the SAR signal correlation coefficient in the coherence maps. Therefore, it was assumed that the formation of LDGD could reduce the coherence value compared to the previous state. The second assumption was an increase in the standard deviation of coherence, which is a classic measurement of variability. Therefore any changes in the surface should lead to increasing standard deviation of coherence compared to the previous state. Images from the Sentinel-1 satellite and provided by the ESA were used for analysis. The research is presented on the basis of two research areas located in the Upper Silesian Coal Basin in the south of Poland. The area in which LDGD could occur was limited to 6 % of the total area in case 1 and 36 % in case 2 by applying an appropriate methodology of satellite image coherence analysis. This paper is an introduction to the development of a method of detecting LDGDs caused by underground mining and to study these issues further.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.