Abstract

The aim of this paper is to explore a linear geometric algorithm for recovering the three dimensional motion of a moving camera from image velocities. Generic similarities and differences between the discrete approach and the differential approach are clearly revealed through a parallel development of an analogous motion estimation theory previously explored in Vieville, T. and Faugeras, O.D. 1995. In Proceedings of Fifth International Conference on Computer Vision, pp. 750–756s Zhuang, X. and Haralick, R.M. 1984. In Proceedings of the First International Conference on Artificial Intelligence Applications, pp. 366–375. We present a precise characterization of the space of differential essential matrices, which gives rise to a novel eigenvalue-decomposition-based 3D velocity estimation algorithm from the optical flow measurements. This algorithm gives a unique solution to the motion estimation problem and serves as a differential counterpart of the well-known SVD-based 3D displacement estimation algorithm for the discrete case. Since the proposed algorithm only involves linear algebra techniques, it may be used to provide a fast initial guess for more sophisticated nonlinear algorithms (Ma et al., 1998c. Electronic Research Laboratory Memorandum, UC Berkeley, UCB/ERL(M98/37)). Extensive simulation results are presented for evaluating the performance of our algorithm in terms of bias and sensitivity of the estimates with respect to different noise levels in image velocity measurements.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.