Abstract

Quantum circuit depth minimization is critical for practical applications of circuit-based quantum computation. In this work, we present a systematic procedure to decompose multiqubit controlled unitary gates, which is essential in many quantum algorithms, to controlled-NOT and single-qubit gates with which the quantum circuit depth only increases linearly with the number of control qubits. Our algorithm does not require any ancillary qubits and achieves a quadratic reduction of the circuit depth against known methods. We show the advantage of our algorithm with proof-of-principle experiments on the IBM quantum cloud platform.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call