Abstract

A randomness extractor is an algorithm which extracts randomness from a low-quality random source, using some additional truly random bits. We construct new extractors which require only log n + O(1) additional random bits for sources with constant entropy rate. We further construct dispersers, which are similar to one-sided extractors, which use an arbitrarily small constant times log n additional random bits for sources with constant entropy rate. Our extractors and dispersers output 1-α fraction of the randomness, for any α>0.We use our dispersers to derandomize results of Hastad [23] and Feige-Kilian [19] and show that for all e>0, approximating MAX CLIQUE and CHROMATIC NUMBER to within n1-e are NP-hard. We also derandomize the results of Khot [29] and show that for some γ > 0, no quasi-polynomial time algorithm approximates MAX CLIQUE or CHROMATIC NUMBER to within n/2(log n)1-γ, unless NP = P.Our constructions rely on recent results in additive number theory and extractors by Bourgain-Katz-Tao [11], Barak-Impagliazzo-Wigderson [5], Barak-Kindler-Shaltiel-Sudakov-Wigderson [6], and Raz [36]. We also simplify and slightly strengthen key theorems in the second and third of these papers, and strengthen a related theorem by Bourgain [10].

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.