Abstract

An unbalanced repair is a composite patch bonded to one side of a cracked structure for the purpose of preventing or reducing damage growth in the substrate. A single-sided repair offsets the load path within the structure, inducing out-of-plane bending. This bending increases the stress intensity in the underlying crack and causes adhesive peel stresses and bending of the repair which can, relative to a repair that is restrained against bending, lead to early failure. In this article the authors correct the analysis of Wang and Rose [Wang, C.H., Rose, L.R.F., 1997. On the design of bonded patches for one-sided repair. In: Proceedings of the 11th International Conference on Composite materials, Gold Coast, Australia, vol. 5, pp. 347–356] developed by using an energy analysis of a single-sided or unbalanced repair applied to a very long-crack, to comply with Maxwell’s reciprocal theorem and to account for transverse normal and shear stresses at the crack tip and the accompanying shear deflections. The authors then develop closed-form equations useful for bonded composite repair design and damage tolerance assessment of cracks of arbitrary length by developing a new method for interpolation between this long-crack limit and a short-crack limit based on the stress intensity and crack face displacements for an unreinforced crack. The interpolation method is then tested against an advanced line-spring model that has been created by using a 6th order generalized plane strain plate formulation in extension and a new 8th order formulation in bending, thus allowing for the inclusion of transverse shear and normal stresses. The closed-form equations are found to be accurate when compared to the line-spring model, and to provide reasonable results when compared to a three-dimensional finite element model of a bonded repair. Inaccuracies are shown to exist principally in the determination of the nominal stresses in the vicinity of the crack.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call