Abstract
Images captured under low-illumination conditions usually suffer from severe degradations, such as fading and low contrast, drastically affecting the performance of systems relying on images under low-illumination conditions. To address such problems, this study proposes a linear contrast enhancement network (LCENet) for low-illumination image enhancement. It consists of three subnets: two encoder–decoder-based subnets for gradient map restoration and brightness enhancement, respectively, and a backbone network for adaptive brightness and contrast adjustment. In addition, a linear contrast enhancement adaptive instance normalization (LCEAIN) module with linear contrast enhancement ability is proposed in the backbone network, which can avoid the problem of ignoring contrast enhancement when enhancing image brightness. Considerable evaluations on both synthetic and real low-illumination images show that the proposed method performs favorably against other existing similar methods. Moreover, our method can handle complex low-illuminance conditions and has good generalization for low-illuminance scenes with backlighting, night scenes with light sources, as well as underwater scenes with low illuminance. Code: <uri xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">https://github.com/zhouzhaorun/LCENet</uri> .
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Instrumentation and Measurement
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.