Abstract

Linear complexity is a much used metric of the security of any binary sequence with application in communication systems and cryptography. In this work, we propose a method of computing the linear complexity of a popular family of cryptographic sequences, the so-called generalized sequences. Such a family is generated by means of the irregular decimation of a single Pseudo Noise sequence (PN-sequence). The computation method is based on the comparison of the PN-sequence with shifted versions of itself. The concept of linear recurrence relationship and the rows of the Sierpinski triangle play a leading part in this computation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.