Abstract

We introduce a new class of dynamical systems called complementarity systems. The time evolution of these systems consists of a series of continuous phases separated by which cause a change in dynamics and possibly a jump in the state vector. The occurrence of events is governed by certain inequalities similar to those appearing in the linear complementarity problem of mathematical programming. The framework we describe is suitable for certain situations in which both differential equations and inequalities play a role; for instance, in mechanics, electrical networks, piecewise linear systems, and dynamic optimization. We present a precise definition of the solution concept of linear complementarity systems and give sufficient conditions for existence and uniqueness of solutions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.