Abstract

A new class of filters, called linear combination of weighted order statistic (LWOS) filters, is introduced. This filter is a combination of L-filters and weighted order statistic (WOS) filters. Based on the observation that this filter possesses the threshold decomposition property, a representation of LWOS filters, named the canonical representation, is developed. It is shown that most nonrecursive filters having the threshold decomposition property can be thought of as special cases of the canonical LWOS filter. This result indicates that this class of LWOS filters encompasses a variety of filters which include median-type nonlinear filters and linear FIR filters. A procedure for designing an optimal canonical LWOS filter under the mean square error (MSE) criterion has been developed. The optimization of LWOS filters yields an FIR Wiener filter when the input is zero-mean Gaussian and a median-type nonlinear filter for non-Gaussian inputs. Experimental results in image restoration are presented to compare the relative performances of the LWOS and existing filters.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call