Abstract

We study the sizes of minimal finite state machines associated with linear cellular automata. In particular, we construct a class of binary linear cellular automata whose corresponding minimal automata exhibit full exponential blow-up. These cellular automata have Hamming distance 1 to a permutation automaton. Moreover, the corresponding minimal Fischer automata as well as the minimal DFAs have maximal complexity. By contrast, the complexity of higher iterates of a cellular automaton always stays below the theoretical upper bound.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.