Abstract

A finite element procedure to carry out linear buckling analysis of thin-walled members is developed on the basis of the existing Generalised Beam Theory (GBT) and constrained Finite Strip Method (cFSM). It allows designers to uncouple the buckling modes of a finite element model and, consequently, to calculate pure elastic buckling loads. The procedure can easily be applied to members with general boundary conditions subjected to compression or bending. The results obtained are rather accurate when compared to the values calculated via GBT and cFSM. As a consequence, it is demonstrated that linear buckling analyses can be performed with the Finite Element Method in a similar way as can be done with the existing GBT and cFSM procedures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.