Abstract
In this paper, we propose a method for constructing a new class of copulas. They are called linear B-spline copulas which are a good approximation of a given complicated copula by using finite numbers of values of this copula without the loss of some essential properties. Moreover, rigorous analysis shows that the empirical linear B-spline copulas are more effective than empirical copulas to estimate perfectly dependent copulas. For the cases of nonperfectly dependent copulas, simulations show that the empirical linear B-spline copulas also improve the empirical copulas to estimate the underlying copula structure. Furthermore, we compare the performance of parametric estimation of copulas based on the empirical copulas with that based on the empirical linear B-spline copulas by simulations. In most of the cases, the latter are better than the former.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.