Abstract
Multiple biomarkers are often combined to improve disease diagnosis. The uniformly optimal combination, i.e., with respect to all reasonable performance metrics, unfortunately requires excessive distributional modeling, to which the estimation can be sensitive. An alternative strategy is rather to pursue local optimality with respect to a specific performance metric. Nevertheless, existing methods may not target clinical utility of the intended medical test, which usually needs to operate above a certain sensitivity or specificity level, or do not have their statistical properties well studied and understood. In this article, we develop and investigate a linear combination method to maximize the clinical utility empirically for such a constrained classification. The combination coefficient is shown to have cube root asymptotics. The convergence rate and limiting distribution of the predictive performance are subsequently established, exhibiting robustness of the method in comparison with others. An algorithm with sound statistical justification is devised for efficient and high-quality computation. Simulations corroborate the theoretical results, and demonstrate good statistical and computational performance. Illustration with a clinical study on aggressive prostate cancer detection is provided.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.