Abstract

NMR and X-ray diffraction studies were conducted on Pt(II)LCl2 complexes prepared with the new N-donor ligands N(SO2R)Me ndpa (R = Me, Tol; n = 2, 4). These ligands differ from N(H)dpa (di-2-picolylamine) in having the central N within a tertiary sulfonamide group instead of a secondary amine group and having Me groups at the 6,6'-positions ( n = 2) or 3,3',5,5'-positions ( n = 4) of the pyridyl rings. The N(SO2R)3,3',5,5'-Me4dpa ligands are coordinated in a bidentate fashion in Pt( N(SO2R)3,3',5,5'-Me4dpa)Cl2 complexes, forming a rare eight-membered chelate ring. The sulfonamide N atom did not bind to Pt(II), consistent with indications in the literature that tertiary sulfonamides are unlikely to anchor two meridionally coordinated five-membered chelate rings in solutions of coordinating solvents. The N(SO2R)6,6'-Me2dpa ligands coordinate in a monodentate fashion to form the binuclear complexes [ trans-Pt(DMSO)Cl2]2( N(SO2R)6,6'-Me2dpa). The monodentate instead of bidentate N(SO2R)6,6'-Me2dpa coordination is attributed to 6,6'-Me steric bulk. These binuclear complexes are indefinitely stable in DMF- d7, but in DMSO- d6 the N(SO2R)6,6'-Me2dpa ligands dissociate completely. In DMSO- d6, the bidentate ligands in Pt( N(SO2R)3,3',5,5'-Me4dpa)Cl2 complexes also dissociate, but incompletely; these complexes provide rare examples of association-dissociation equilibria of N,N bidentate ligands in Pt(II) chemistry. Like typical cis-PtLCl2 complexes, the Pt( N(SO2R)3,3',5,5'-Me4dpa)Cl2 complexes undergo monosolvolysis in DMSO- d6 to form the [Pt( N(SO2R)3,3',5,5'-Me4dpa)(DMSO- d6)Cl]+ cations. However, unlike typical cis-PtLCl2 complexes, the Pt( N(SO2R)3,3',5,5'-Me4dpa)Cl2 complexes surprisingly do not react readily with the excellent N-donor bioligand guanosine. A comparison of the structural features of over 50 known relevant Pt(II) complexes having smaller chelate rings with those of the very few relevant Pt(II) complexes having eight-membered chelate rings indicates that the pyridyl rings in Pt( N(SO2R)3,3',5,5'-Me4dpa)Cl2 complexes are well positioned to form strong Pt-N bonds. Therefore, the dissociation of the bidentate ligand and the poor biomolecule reactivity of the Pt( N(SO2R)3,3',5,5'-Me4dpa)Cl2 complexes arise from steric consequences imposed by the -CH2-N(SO2R)-CH2- chain in the eight-membered chelate ring.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.