Abstract
An exact solution to the bending of variable-thickness orthotropic plates is developed for a variety of boundary conditions. The procedure, based on a Lévy-type solution considered in conjunction with the state-space concept, is applicable to inhomogeneous variable-thickness rectangular plates with two opposite edges simply supported. The remaining ones are subjected to a combination of clamped, simply supported, and free boundary conditions, and between these two edges the plate may have varying thickness. The procedure is valuable in view of the fact that tables of deflections and stresses cannot be presented for inhomogeneous variable-thickness plates as for isotropic homogeneous plates even for commonly encountered loads because the results depend on the inhomogeneity coefficient and the orthotropic material properties instead of a single flexural rigidity. Benchmark numerical results, useful for the validation or otherwise of approximate solutions, are tabulated. The influences of the degree of inhomogeneity, aspect ratio, thickness parameter, and the degree of nonuniformity on the deflections and stresses are investigated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.