Abstract

Optical conductivity measurements on a BaCoS2 single crystal show an unusual linear behavior over a broad spectral range. In the paramagnetic phase above 300 K, the spectrum shows no gap, which contradicts the previously proposed scenario of a charge-transfer Mott insulator. Ab initio dynamical mean field theory calculations including a retarded Hubbard interaction explain the data in terms of an incipient opening of a Co(3d)-S(3p) charge-transfer gap concomitant to incoherent charge transport driven by electronic correlations. These results point to a non-Fermi liquid scenario with Hund's metal properties in the paramagnetic state, which arises from an incipient Mott phase destabilized by low-energy charge fluctuations across the vanishing 3d-3p charge-transfer gap.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.