Abstract

AbstractIn Math Program 55(1992), 129–168, Conforti and Rao conjectured that every balanced bipartite graph contains an edge that is not the unique chord of a cycle. We prove this conjecture for balanced bipartite graphs that do not contain a cycle of length 4 (also known as linear balanced bipartite graphs), and for balanced bipartite graphs whose maximum degree is at most 3. We in fact obtain results for more general classes, namely linear balanceable and subcubic balanceable graphs. Additionally, we prove that cubic balanced graphs contain a pair of twins, a result that was conjectured by Morris, Spiga, and Webb in ( Discrete Math 310(2010), 3228–3235).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.