Abstract

Let $X$ be a smooth hypersurface $X$ of degree $d\geq4$ in a projective space $\mathbb P^{n+1}$. We consider a projection of $X$ from $p\in\mathbb P^{n+1}$ to a plane $H\cong\mathbb P^n$. This projection induces an extension of function fields $\mathbb C(X)/\mathbb C(\mathbb P^n)$. The point $p$ is called a Galois point if the extension is Galois. In this paper, we will give a necessary and sufficient conditions for $X$ to have Galois points by using linear automorphisms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.