Abstract
We analyze the complexity of the restrictions of linear arrangement problems that are obtained if the legal permutations of the nodes are restricted to those that can be obtained by orderings of a binary tree structuring the nodes of the graph, the so-called p-tree. These versions of the linear arrangement problems occur in several places in current circuit layout systems. There the p-tree is the result of a recursive partitioning process of the graph. We show that the MINCUT LINEAR ARRANGEMENT problem and the OPTIMAL LINEAR ARRANGEMENT problem can be solved in polynomial time, if the p-tree is balanced. All other versions of the linear arrangement problems we analyzed are NP-complete.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.