Abstract

Motor protein molecules such as heavy meromyosin (HMM), one of the major components of skeletal muscle, were arranged linearly on a mechanically deposited fluoropolymer thin film substrate in order to regulate the direction of movement generated by the motor protein. The fluoropolymer film consisted of many linear parallel ridges whose heights and widths were 10 to 20 nm and 10 to 100 nm, respectively. The fluoropolymer ridges adsorbed HMM molecules that were applied onto the film. Actin filaments labeled with rhodamine-phalloidin were observed under a fluorescence microscope moving linearly on the HMM-coated ridges. The observation indicates that HMM molecules were aligned on the fluoropolymer ridges while retaining their function. The velocity of actin movement was measured in this system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.