Abstract

A theoretical study of linear and weakly nonlinear thermal convection in a spherical shell is performed. The Boussinesq fluid is of infinite Prandtl number and its viscosity is temperature dependent. The linear stability eigenvalue problem is derived and solved by a shooting method assuming isothermal, stress-free boundaries, a self-gravitating fluid, and corresponding to two heating models. The first is heating from below, and the second is a model of combined heating from below and within, such that convection is described by a self-adjoint linear stability formulation. In addition, nonlinear, hemispherical, axisymmetric convection is computed by a finite volume technique for a shell with 0.5 aspect ratio. It is shown that 2-cell convection occurs as transcritical bifurcation for a viscosity constrast across the shell up to about 150. Motions with four cells are also possible. As expected, the subcritical range is found to increase with increasing viscosity contrast, even when the linear operator is self-adjoint.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.