Abstract
The objective of this study was to produce linear and nonlinear viscoelastic models of eight major ligaments in the human ankle/foot complex for use in computer models of the lower extremity. The ligaments included in this study were the anterior talofibular (ATaF), anterior tibiofibular (ATiF), anterior tibiotalar (ATT), calcaneofibular (CF), posterior talofibular (PTaF), posterior tibiofibular (PTiF), posterior tibiotalar (PTT), and tibiocalcaneal (TiC) ligaments. Step relaxation and ramp tests were performed. Back-extrapolation was used to correct for vibration effects and the error introduced by the finite rise time in step relaxation tests. Ligament behavior was found to be nonlinear viscoelastic, but could be adequately modeled up to 15 percent strain using Fung's quasilinear viscoelastic (QLV) model. Failure properties and the effects of preconditioning were also examined.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.