Abstract

The focus of this paper is to conduct research on MHD Casson-Williamson nanofluids flow over an inclined plate with the influence of thermal radiation and Soret-Dufour mechanisms using spectral collocation and statistical analysis. The simultaneous flow of Casson-Williamson non-Newtonian fluids in the presence of a magnetic field, Joule heating, chemical reaction, and viscous dissipation is modelled by utilizing partial differential equations (PDEs). These equations were transformed into coupled nonlinear ordinary differential equations by using an appropriate similarity variable. A numerical and statistical analysis was performed on the transformed equations to obtain significant effects of flow parameters on velocity, temperature, and concentration distributions. An increase in the value of the thermal radiation is observed to increase the fluid temperature, thermal condition, and thermal boundary layer thickness. An increased value of magnetic parameter was observed to decrease the fluid velocity. Due to a magnetic field and the dynamic plastic viscosity, the hydrodynamic boundary layer was observed to decline due to an increase in Casson parameter. The present study was compared with studies in the literature and found in good agreement.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call