Abstract

A nodal discontinuous Galerkin (DG) code based on the nonlinear wave equation is developed to simulate transient ultrasound propagation. The DG method has high-order accuracy, geometric flexibility, low dispersion error, and excellent scalability, so DG is an ideal choice for solving this problem. A nonlinear acoustic wave equation is written in a first-order flux form and discretized using nodal DG. A dynamic sub-grid scale stabilization method for reducing Gibbs oscillations in acoustic shock waves is then established. Linear and nonlinear numerical results from a two-dimensional axisymmetric DG code are presented and compared to numerical solutions obtained from linear and Khokhlov-Zabolotskaya-Kuznetsov-based simulations in FOCUS. The numerical results indicate that these nodal DG simulations capture nonlinearity, thermoviscous absorption, and diffraction for both flat and focused pistons in homogeneous media.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.