Abstract

The thermal lens technique is applied to vibrational overtone spectroscopy of solutions of naphthalene (C10H8) in liquid hexane. The C-H fifth vibrational (Δν = 6) overtone spectrum of C10H8 is detected at room temperature for mole fractions from 0.08 to 19 × 10-6 using n-C6H14 as solvent. By detecting the absorption band in a 19 ppm (parts per million) solution, the peak absorption of the signal is approximately (2.2 ± 0.3) × 10-7 cm-1. A plot of normalized integrated intensity as a function of the mole fraction of naphthalene in solution reveals a dependence of the magnitude of the signal with the probe laser wavelength. If the wavelength of the probe laser is 568 nm, the thermal lens signal (TLS) is linear as a function of the mole fraction of the solution. When the wavelength of the probe laser is 488 nm, the TLS is nonlinear as a function of the concentration. Three different models of nonlinear absorption are discussed. A two-color absorption model that includes the simultaneous absorption of the pump and probe lasers could explain the enhanced magnitude and the nonlinear behavior of the TLS for solutions of mole fraction < 0.1%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.