Abstract

The problem of precisely controlling (within sensor resolution) the height of a steel ball above the ground by levitating it against the force of gravity using an electromagnet is considered. The state variables used to model the system are the ball's position below the magnet, the ball's speed and the current in the electromagnet. Two state-space controllers are compared in terms of their performance in controlling the ball's position. The first controller is based on feedback linearization where a nonlinear state-space transformation along with nonlinear state feedback is used to linearize the system exactly. A linear controller is then used on the resulting system to control the ball's position. As a direct measurement of ball speed is not available, a nonlinear observer with linear error dynamics is used to estimate the speed. The second controller is a standard linear state feedback controller whose design is based on a linear model found by perturbing the nonlinear system model about an operating po...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.