Abstract

The onset of double-diffusive convection in a horizontal fluid-saturated porous layer is examined by taking the Soret effect into consideration. The linear and nonlinear stability analyses are derived, and the corresponding eigenvalue problems are solved. The nonlinear stability analysis is achieved by using the energy method. In both the cases of linear and nonlinear stability theories, the onset criterion for all possible modes is derived analytically. For numerical computations of the eigenvalue problem, the Chebyshev tau method is employed. It is observed that the effect of stabilization or destabilization caused by the Soret parameter is significant for the Soret parameters which are less than \(Sr = 2\). In the absence of the Soret effect, the linear and nonlinear stability thresholds coincide.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.