Abstract
The onset of double diffusive convection is investigated in a Maxwell fluid saturated porous layer with internal heat source. The modified Darcy law for the Maxwell fluid is used to model the momentum equation of the system, and the criterion for the onset of the convection is established through the linear and nonlinear stability analyses. The linear analysis is obtained using the normal mode technique, and the nonlinear analysis of the system is studied with the help of truncated representation of Fourier series. The effects of internal Rayleigh number, stress relaxation parameter, normalized porosity, Lewis number, Vadasz number and solute Rayleigh number on the stationary, and oscillatory and weak nonlinear convection of the system are shown numerically and graphically. The effects of various parameters on transient heat and mass transfer are also discussed and presented analytically and graphically.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.