Abstract

In this paper we describe methods and evaluate programs for linear regression by maximum likelihood when the errors have a heavy tailed stable distribution. The asymptotic Fisher information matrix for both the regression coefficients and the error distribution parameters are derived, giving large sample confidence intervals for all parameters. Simulated examples are shown where the errors are stably distributed and also where the errors are heavy tailed but are not stable, as well as a real example using financial data. The results are then extended to nonlinear models and to non-homogeneous error terms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.