Abstract

The linear and nonlinear characteristics of optical slow-wave structures made of direct coupled Fabry–Perot and Ring Resonators are discussed. The main properties of an infinitely long slow-wave structure are derived analytically with an approach based on the Bloch theory. The spectral behaviour is periodical and closed form expressions for the bandwidth, the group velocity, the dispersion and the linear and nonlinear induced phase shift are derived. For structures of finite length the results still hold providing that proper input/output matching sections are added. In slow-wave structures most of the propagation parameters are enhanced by a factor S called the slowing ratio. In particular nonlinearities result strongly enhanced by the resonant propagation, so that slow-wave structures are likely to become a key point for all-optical processing devices. A numerical simulator has been implemented and several numerical examples of propagation are discussed. It is also shown as soliton propagation is supported by slow-wave structures, demonstrating the flexibility and potentiality of these structures in the field of the all-optical processing.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.