Abstract

Glassy and elastomeric nematic networks with dye molecules present can be very responsive to illumination, huge reversible strains being possible. If absorption is appreciable, strain decreases with depth into a cantilever, leading to bend that is the basis of micro-opto-mechanical systems (MOMS). Bend actually occurs even when Beer's law suggests a tiny penetration of light into a heavily dye-doped system. We model the nonlinear opto-elastic processes behind this effect. In the regime of cantilever thickness giving optimal bending for a given incident light intensity, there are three neutral surfaces. In practice such nonlinear absorptive effects are very important since heavily doped systems are commonly used.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.