Abstract

The molecule triphenylamine (TPA) in tetrahydrofuran (THF) and the starburst triphenylamine oligomer 1,3,5-tris(3-methylphenylphenylamino)benzene (m-MTDAB) in THF and as neat film are characterized. Absorption and emission spectroscopic parameters are determined. The S 0–S 1 transition is found to be weak (nπ * transition) with small fluorescence quantum yield and efficient non-radiative decay (singlet–triplet intersystem crossing). The S 0–S 1 absorption cross-section spectra in the tails of the broad first absorption bands of the compounds are separated out by radiative lifetime determination and applying the mirror-image relation between absorption and emission. Excimer formation is observed for m-MTDAB neat films, its photo-dynamics is studied, and monomer and excimer stimulated emission cross-section spectra are extracted. Reverse saturable absorption is observed for TPA and m-MTDAB in picosecond laser nonlinear transmission measurements (laser duration 35 ps, laser wavelength 347.15 nm) and the responsible excited-state absorption cross-sections are determined. A new method is developed to calculate the excited-state absorption cross-section spectra of the samples in the fluorescence spectral region by amplification/attenuation of spontaneous emission measurements. The excited-state absorption is found to be larger than the stimulated emission for TPA in THF and for m-MTDAB films excluding their lasing ability. For m-MTDAB in THF the stimulated emission is found to be slightly larger than the excited-state absorption at the wavelength position of peak fluorescence emission.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call