Abstract

The experimental and theoretical analysis of linear and nonlinear optical properties of K3B6O10Br (KBOB), with a moderate birefringence that is suitable for UV coherent light generation and optical parametric oscillators, is presented in detail. The second-order nonlinear optical coefficients were measured by the Maker fringe method and the refractive indices dispersion curves were deduced by the minimum deviation technique at 16 different monochromatic sources from UV to NIR, and then the type I and type II phase-matching curves of second, third, and fourth harmonic generation (SHG, THG, and FHG) were calculated. Moreover, the correlations of crystallographic and crystallophysical axes were determined. On the basis of the density functional theory (DFT), the first-principles calculations have been employed successfully to study the structural and electronic properties of KBOB. In addition, to gain further insight into the structure-property relationship, the SHG density method was adopted to analyze the origin of the nonlinear optical response of KBOB.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.