Abstract

Model exact static and frequency-dependent polarizabilities, static second hyperpolarizabilities and THG coefficents of cumulenes and polyenynes, calculated within the correlated Pariser-Parr-Pople (PPP) model defined over the pi-framework are reported and compared with the results for the polyenes. It is found that for the same chain length, the polarizabilities and THG coefficients of the cumulenes are largest and those of the polyenynes smallest with the polyenes having an intermediate value. The optical gap of the infinite cumulene is lowest (0.75 eV) and is associated with a low transition dipole moment for an excitation involving transfer of an electron between the two orthogonal conjugated pi-systems. The polyenynes have the largest optical gap (4.37 eV), with the magnitude being nearly independent of the chain length. This excitation involves charge transfer between the conjugated bonds in the terminal triple bond. Chain length and frequency dependence of alpha(ij) and gamma(ijkl) of these systems are also reported. The effect of a heteroatom on the polarizability and THG coefficients of acetylenic systems is also reported. It has been found that the presence of the heteroatom reduces the polarizability and THG coefficients of these systems, an effect opposite to that found in the polyenes and cyanine dyes. This result has been associated with the different nature of the charge transfer in the acetylenic systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.