Abstract

CsPbBr3 perovskite QDs are precipitated in a borosilicate glass matrix, while protects efficiently the QD from photo-induced and chemical degradation. We show that the CsPbBr3 QD doped glasses exhibit strong visible photoluminescence (PL), which is dependence on the concentration that can be controlled by heat treatment conditions. Due to the stabilization by the glass matrix, we are able to determine the nonlinear optical (NLO) properties with a Z-scan technique. We observe a cross-over from saturated absorption (SA) to reverse saturated absorption (RSA) by either increase the pumping intensity or the QD size, reminiscent of quantum size effect in the NLO response. The RSA is associated with two-photon absorption (TPA) that induces strong upconversion luminescence of QD doped glass samples. Our results imply that the glasses containing CsPbBr3 QDs may find potential applications from solid state lighting to ultrafast optical switches.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.