Abstract

This study focuses on nonlocal boundary value problems (BVPs) for linear and nonlinear elliptic differential-operator equations (DOEs) that are defined in Banach-valued function spaces. The considered domain is a region with varying bound and depends on a certain parameter. Some conditions that guarantee the maximal Lp -regularity and Fredholmness of linear BVPs, uniformly with respect to this parameter, are presented. This fact implies that the appropriate differential operator is a generator of an analytic semigroup. Then, by using these results, the existence, uniqueness and maximal smoothness of solutions of nonlocal BVPs for nonlinear DOEs are shown. These results are applied to nonlocal BVPs for regular elliptic partial differential equations, finite and infinite systems of differential equations on cylindrical domains, in order to obtain the algebraic conditions that guarantee the same properties.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.