Abstract

We report experiments studying the mechanical evolution of layers of the protein lysozyme adsorbing at the air-water interface using passive and active microrheology techniques to investigate the linear and nonlinear rheological response, respectively. Following formation of a new interface, the linear shear rheology, which we interrogate through the Brownian motion of spherical colloids at the interface, becomes viscoelastic with a complex modulus that has approximately power-law frequency dependence. The power-law exponent characterizing this frequency dependence decreases steadily with increasing layer age. Meanwhile, the nonlinear microrheology, probed via the rotational motion of magnetic nanowires at the interface, reveals a layer response characteristic of a shear-thinning power-law fluid with a flow index that decreases with age. We discuss two possible frameworks for understanding this mechanical evolution: gelation and the formation of a soft glass phase.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call