Abstract

The linear and nonlinear low-frequency collisional quantum Buneman instability in electronpositron- ion plasmas have been studied. Buneman instability in low frequency three species quantum plasma has been investigated using the approach of the quantum hydrodynamic model. The one-dimensional low-frequency collisional model is revisited by introducing the Bohm potential term in the momentum equation along with the role of the positron. Low-frequency Buneman instability which arises by one stream of particles drifting over another is investigated in the presence of the positron. Different plasma configurations based on the relative velocities of streaming particles are analyzed and it is observed that positron content enhances the instability in classical limits. Further, we found that in pure quantum limits the instability growth rate is decreased by increasing the positron concentration. The present work is very useful for the nonlinear problems in Quantum Coulomb systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call