Abstract
In this work, the solvation of a nitrosyl ruthenium complex, [(CH3)4N][RuCl3(qn)(NO)] (with qn = deprotonated 8-hydroxyquinoline), which is a potential NO-releasing molecule in the bio-environment, was studied in two bio-friendly solvents, namely deuterated dimethyl sulfoxide (dDMSO) and water (D2O). A blue-shifted NO stretching frequency was observed in water with respect to that in dDMSO, which was believed to be due to ligand-solvent hydrogen-bonding interactions, one N═O···D and particularly three Ru-Cl···D, that show competing effects on the NO bond length. The dynamic differences of the NO stretch in these two solvents were further revealed by transient pump-probe IR and two-dimensional IR results: faster vibrational relaxation and faster spectral diffusion (SD) were observed in D2O, confirming stronger solvent-solute interaction and also faster solvent structural dynamics in D2O than in DMSO. Further, a significant non-decaying residual in the SD dynamics was observed in D2O but not in DMSO, suggesting the formation of a stable solvation shell in water due to strong multi-site ligand-solvent hydrogen-bonding interactions, which is in agreement with the observed blue-shifted NO stretching frequency. This work demonstrates that small solvent molecules such as water can form a relatively rigid solvation shell for certain transition metal complexes due to cooperative ligand-solvent interactions and show slower dynamics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.