Abstract

This research focuses on the identification and causality analysis of coherent structures that arise in turbulent flows in square and rectangular ducts. Coherent structures are first identified from direct numerical simulation data via proper orthogonal decomposition (POD), both by using all velocity components, and after separating the streamwise and secondary components of the flow. The causal relations between the mode coefficients are analysed using pairwise-conditional Granger causality analysis. We also formulate a nonlinear Granger causality analysis that can account for nonlinear interactions between modes. Focusing on streamwise-constant structures within a duct of short streamwise extent, we show that the causal relationships are highly sensitive to whether the mode coefficients or their squared values are considered, whether nonlinear effects are explicitly accounted for, and whether streamwise and secondary flow structures are separated prior to causality analyses. We leverage these sensitivities to determine that linear mechanisms underpin causal relationships between modes that share the same symmetry or anti-symmetry properties about the corner bisector, while nonlinear effects govern the causal interactions between symmetric and antisymmetric modes. In all cases, we find that the secondary flow fluctuations (manifesting as streamwise vorticial structures) are the primary cause of both the presence and movement of near-wall streaks towards and away from the duct corners.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.