Abstract

Spectra of linear and nonlinear absorption of GaAs and CdSe semiconducting quantum wires crystallized in a transparent dielectric matrix (inside chrysotile-asbestos nanotubes) have been measured. Their features are interpreted in terms of excitonic transitions and filling of the exciton phase space in the quantum wires. The theoretical model presented here has allowed us to calculate the energies of excitonic transitions that are in qualitative agreement with experimental data. The calculated exciton binding energies in quantum wires are a factor of several tens higher than in bulk semiconductors. The cause of this increase in the exciton binding energy is not only the size quantization, but also the “dielectric enhancement,” i.e., stronger attraction between electrons and holes owing to the large difference between permittivities of the semiconductor and dielectric matrix.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.