Abstract

We use molecular dynamics simulations to investigate the linear and nonlinear density response functions for simple fluids under the influence of spatially periodic external fields. Using a direct Fourier space decomposition of the instantaneous microscopic density for the perturbed fluid we can clearly identify the distinct order of response. Using a single component sinusoidal longitudinal force for a set of wavelengths and amplitudes we show that in the linear response regime the proportionality between the external field amplitude and the density perturbation can be used to determine the linear density response function, and hence the pair correlation function, static liquid structure factor, and lowest order direct correlation function. We show also that for large external field amplitudes a single component external field can be used to determine the form for lowest order and second lowest order nonlinear response functions for restricted regions of the total response function spaces.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call