Abstract

Sub-wavelength chiral resonators formed from artificial structures exhibit exceedingly large chiroptical responses compared to those observed in natural media. Owing to resonant excitation, chiral near fields can be significantly enhanced for these resonators, holding great promise for developing enantioselective photonic components such as biochemical sensors based on circular dichroism (CD) and spin-dependent nonlinear imaging. In the present work, strong linear and nonlinear chiroptical responses (scattering CD > 0.15 and nonlinear differential CDs > 0.4) at visible and near infrared frequencies are reported for the first time for individual micrometer-scale plasmonic and dielectric helical structures. By leveraging dark-field spectroscopy and nonlinear optical microscopy, the circular-polarization-selective scattering behavior and nonlinear optical responses (e.g., second harmonic generation and two-photon photoluminescence) of 3D printed micro-helices with feature sizes comparable to the wavelength (total length is ∼5λ) are demonstrated. These micro-helices provide potential for readily accessible photonic platforms, facilitating an enantiomeric analysis of chiral materials. One such example is the opportunity to explore ultracompact photonic devices based on single, complex meta-atoms enabled by state-of-the-art 3D fabrication techniques.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.